

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS 4727

Further Pure Mathematics 3

Wednesday 25 JANUARY 2006 Morning 1 hour 30 minutes

Additional materials: 8 page answer booklet Graph paper List of Formulae (MF1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 Find the acute angle between the skew lines

$$\frac{x+3}{1} = \frac{y-2}{1} = \frac{z-4}{-1}$$
 and $\frac{x-5}{2} = \frac{y-1}{-3} = \frac{z+3}{1}$. [4]

2 The tables shown below are the operation tables for two isomorphic groups G and H.

G	a	b	c	d	H	2	4	6	8
a	d	а	b	c	2	4	8	2	6
b	a	b	c	d	4	8	6	4	2
c	b	c	d	a	6	2	4	6	8
d	c	d	a	b	8	6	2	8	4

- (i) For each group, state the identity element and list the elements of any proper subgroups. [4]
- (ii) Establish the isomorphism between G and H by showing which elements correspond. [3]
- 3 (i) By using the substitution $y^3 = z$, find the general solution of the differential equation

$$3y^2 \frac{dy}{dx} + 2xy^3 = e^{-x^2}$$
,

giving y in terms of x in your answer.

- (ii) Describe the behaviour of y as $x \to \infty$. [1]
- 4 (i) By expressing $\cos \theta$ and $\sin \theta$ in terms of $e^{i\theta}$ and $e^{-i\theta}$, or otherwise, show that

$$\cos^2\theta\sin^4\theta = \frac{1}{32}(\cos 6\theta - 2\cos 4\theta - \cos 2\theta + 2).$$
 [6]

(ii) Hence find the exact value of

$$\int_0^{\frac{1}{3}\pi} \cos^2 \theta \sin^4 \theta \, \mathrm{d}\theta. \tag{3}$$

[6]

- 5 (i) Solve the equation $z^4 = 64(\cos \pi + i \sin \pi)$, giving your answers in polar form. [2]
 - (ii) By writing your answers to part (i) in the form x + iy, find the four linear factors of $z^4 + 64$. [4]
 - (iii) Hence, or otherwise, express $z^4 + 64$ as the product of two real quadratic factors. [3]

The cuboid $\overrightarrow{OABCDEFG}$ shown in the diagram has $\overrightarrow{OA} = 4\mathbf{i}$, $\overrightarrow{OC} = \mathbf{j}$, $\overrightarrow{OD} = 2\mathbf{k}$, and M is the mid-point of DE.

- (i) Find a vector perpendicular to \overrightarrow{MB} and \overrightarrow{OF} . [3]
- (ii) Find the cartesian equations of the planes *CMG* and *OEG*. [5]
- (iii) Find an equation of the line of intersection of the planes CMG and OEG, giving your answer in the form $\mathbf{r} = \mathbf{a} + t\mathbf{b}$.
- A group G has an element a with order n, so that $a^n = e$, where e is the identity. It is given that x is any element of G distinct from a and e.
 - (i) Prove that the order of $x^{-1}ax$ is n, making it clear which group property is used at each stage of your proof. [6]
 - (ii) Express the inverse of $x^{-1}ax$ in terms of some or all of x, x^{-1} , a and a^{-1} , showing sufficient working to justify your answer. [3]
 - (iii) It is now given that a commutes with every element of G. Prove that a^{-1} also commutes with every element. [2]
- 8 (i) Find the general solution of the differential equation

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 2k\frac{\mathrm{d}x}{\mathrm{d}t} + 4x = 0,$$

where k is a real constant, in each of the following cases.

(a) |k| > 2

6

- **(b)** |k| < 2
- (c) k = 2

[8]

- (ii) (a) In the case when k = 1, find the solution for which x = 0 and $\frac{dx}{dt} = 6$ when t = 0. [4]
 - (b) Describe what happens to x as $t \to \infty$ in this case, justifying your answer. [2]

		
1 Directions $[1, 1, -1]$ and $[2, -3, 1]$	B1	For identifying both directions (may be implied by working)
$\theta = \cos^{-1} \frac{ [1, 1, -1] \cdot [2, -3, 1] }{\sqrt{3}}$	M1	For using scalar product of their direction vectors
$=\cos^{-1}\frac{ -2 }{\sqrt{42}}$	MI	For completely correct process for their angle
= 72.0°, 72° or 1.26 rad	A1 4	For correct answer
2 (i) Identities b, 6 Subgroups (b, d) (6, 4)	B1 B1 B1 B1	For correct identities
Subgroups $\{b, d\}, \{6, 4\}$	4	For correct subgroups
(ii) $\{a, b, c, d\} \leftrightarrow \{2, 6, 8, 4\}$ or $\{8, 6, 2, 4\}$	B1 B1	For $b \leftrightarrow 6$, $d \leftrightarrow 4$
	B1 3	For $a, c \leftrightarrow 2$, 8 in either order
		SR If B0 B0 B0 then M1 A1 may be awarded for stating the orders of all elements in G and H
	7	
$3 (i) 3y^2 \frac{dy}{dx} = \frac{dz}{dx}$	M1	For differentiating substitution
$\Rightarrow \frac{\mathrm{d}z}{\mathrm{d}x} + 2xz = \mathrm{e}^{-x^2}$	A1	For resulting equation in z and x
Integrating factor $\left(e^{\int 2x dx}\right) = e^{x^2}$	B1 √	For correct IF f.t. for an equation in suitable form
$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}x} \left(z \mathrm{e}^{x^2} \right) OR \frac{\mathrm{d}}{\mathrm{d}x} \left(y^3 \mathrm{e}^{x^2} \right) = 1$	Ml	For using IF correctly
$\Rightarrow z e^{x^2} OR y^3 e^{x^2} = x (+c)$	A 1	For correct integration (+c not required here)
$\Rightarrow y = (x+c)^{\frac{1}{3}} e^{-\frac{1}{3}x^2}$	A1 6	For correct answer AEF
(ii) As $x \to \infty$, $y \to 0$	B1 1	For correct statement
	7	
4 (i) $\cos \theta = \frac{1}{2} \left(e^{i\theta} + e^{-i\theta} \right)$,	B1	For either expression, seen or implied
$\sin\theta = \frac{1}{2i} \left(e^{i\theta} - e^{-i\theta} \right)$		z may be used for e ^{iθ} throughout
$\Rightarrow \cos^2 \theta \sin^4 \theta = \frac{1}{4} \left(e^{i\theta} + e^{-i\theta} \right)^2 \frac{1}{16} \left(e^{i\theta} - e^{-i\theta} \right)^4$		
$= \frac{1}{4} \left(e^{2i\theta} + 2 + e^{-2i\theta} \right) \cdot \frac{1}{16} \left(e^{4i\theta} - 4e^{2i\theta} + 6 - 4e^{-2i\theta} + e^{-4i\theta} \right)$	MI Al	For expanding terms For the 2 correct expansions
	A1	SR Allow A1 A0 for $k(e^{2i\theta} + 2 + e^{-2i\theta})(e^{4i\theta} - 4e^{2i\theta} + 6 - 4e^{-2i\theta} + e^{-4i\theta}), k \neq \frac{1}{64}$
$ = \frac{1}{64} \left(\left(e^{6i\theta} + e^{-6i\theta} \right) - 2 \left(e^{4i\theta} + e^{-4i\theta} \right) - \left(e^{2i\theta} + e^{-2i\theta} \right) + 4 \right) $	M1	For grouping terms and using multiple angles
$= \frac{1}{32} \left(\cos 6\theta - 2 \cos 4\theta - \cos 2\theta + 2 \right) \mathbf{AG}$	A1 6	For answer obtained correctly

(ii) $\int_0^{\frac{1}{3}\pi} \cos^2 \theta \sin^4 \theta d\theta =$		
$= \frac{1}{32} \left[\frac{1}{6} \sin 6\theta - \frac{1}{2} \sin 4\theta - \frac{1}{2} \sin 2\theta + 2\theta \right]_0^{\frac{1}{3}\pi}$	M1 A1	For integrating answer to (i) For all terms correct
$= \frac{1}{32} \left[0 + \frac{1}{4} \sqrt{3} - \frac{1}{4} \sqrt{3} + \frac{2}{3} \pi - 0 \right] = \frac{1}{48} \pi$	A1 3	For correct answer
	9	
5 (i)	B1	For correct modulus AEF
EITHER $z = \sqrt{8} \operatorname{cis}(2k+1) \frac{\pi}{4}, \ k = 0, 1, 2, 3$		
OR $z = \sqrt{8} e^{(2k+1)\frac{\pi}{4}i}, k = 0, 1, 2, 3$	B1 2	For correct arguments AEF
(ii)		
$z = 2\sqrt{2} \left\{ \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i, -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i, -\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i, \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i \right\}$	B1	For any of $\pm \frac{1}{\sqrt{2}} \pm \frac{1}{\sqrt{2}} i$
z = 2 + 2i, -2 + 2i, -2 - 2i, 2 - 2i	B1	For any one value of z correct
	B1	For all values of z correct AEFcartesian (may be implied from symmetry or factors)
$(z-\alpha), (z-\beta), (z-\gamma), (z-\delta)$	B1 √ 4	f.t., where α , β , γ , δ are answers above
(iii) EITHER $(z-(2+2i))(z-(2-2i))$	Ml	For combining factors from (ii) in pairs
$\times (z - (-2 + 2i))(z - (-2 - 2i))$	M1	Use of complex conjugate pairs
$= (z^2 + 4z + 8)(z^2 - 4z + 8)$	A1	For correct answer
$OR z^4 + 64 = (z^2 + az + b)(z^2 + cz + d)$	M1	For equating coefficients
$\Rightarrow a+c=0, b+ac+d=0, ad+bc=0, bd=64$	M1	For solving equations
Obtain $(z^2 + 4z + 8)(z^2 - 4z + 8)$	A1 3	For correct answer
	9	
6 (i) $MB = [2, 1, -2]$, $OF = [4, 1, 2]$ $MB \times OF$	B1 M1	For either vector correct (allow multiples) For finding vector product of their MB and OF
= [4, -12, -2] OR k[2, -6, -1]	A1 3	For correct vector
(ii) EITHER Find vector product of any two of $\pm [2, -1, 2], \pm [0, 0, 2],$ $\pm [2, -1, 0]$	M1	For finding two relevant vector products
and any two of		
$\pm [4, 0, 2], \pm [4, -1, 0], \pm [0, 1, 2]$ Obtain $k[1, 2, 0]$	A1	For correct LHS of plane CMG
Obtain $k[1, 2, 0]$ Obtain $k[1, 4, -2]$	A1	For correct LHS of plane OEG
	M1	For substituting a point into each equation
x + 2y = 2 and $x + 4y - 2z = 0$	A1	For both equations correct AEF
OR Use $ax + by + cz = d$ with	M1	For use of cartesian equation of plane
coordinates		The second of th
of C , M , G OR O , E , G substituted Obtain $a:b:c=1:2:0$ for CMG	A1	For correct ratio
Obtain $a:b:c=1:2:0$ for CMG Obtain $a:b:c=1:4:-2$ for OEG	A1 A1	For correct ratio
John 4.0.0 - 1.4. 2 101 0110	MI	For substituting a point into each equation
x + 2y = 2 and $x + 4y - 2z = 0$	A1 5	For both equations correct AEF

an marran n	т	la di di matana intanna afa
(iii) EITHER Put x , $y OR z = t$ in planes	M1	For solving plane equations in terms of a parameter OR for finding vector product of
OR evaluate $k[1, 2, 0] \times k[1, 4, -2]$		normals to planes from (ii)
Obtain $r = a + tb$ where		Hormais to planes from (ii)
$\mathbf{a} = [0, 1, 2], [2, 0, 1] OR [4, -1, 0]$	A1	Obtain a correct point AEF
$\mathbf{b} = k[-2, 1, 1]$	A1 3	Obtain correct direction AEF
	11	
7 (i) $(x^{-1}ax)^m = (x^{-1}ax)(x^{-1}ax)(x^{-1}ax)$	M1	For considering powers of $x^{-1}ax$
$= x^{-1}aaax, \text{ associativity, } xx^{-1} = e$	A1 A1	For using associativity and inverse properties
$= x^{-1}a^m x = x^{-1}ex$ when $m = n$,	B1	For using order of a correctly
not m < n		
$=x^{-1}x$	A1	For using property of identity
$=e \Rightarrow \text{ order } n$	A1 6	For correct conclusion
(ii) EITHER $(x^{-1}ax)z = e$	M1	For attempt to solve for z AEF
$\Rightarrow axz = xe = x \Rightarrow xz = a^{-1}x$	A1	For using pre- or post multiplication
$\Rightarrow z = x^{-1}a^{-1}x$	A1	For correct answer
OR Use $(pq)^{-1} = q^{-1}p^{-1}$		
$OR(pqr)^{-1} = r^{-1}q^{-1}p^{-1}$	M1	For applying inverse of a product of elements
State $(x^{-1})^{-1} = x$	A1	For stating this property
Obtain $x^{-1}a^{-1}x$	A1 3	For correct answer with no incorrect
		working
		SR correct answer with no working
	***************************************	scores B1 only
(iii) $ax = xa \Rightarrow x = a^{-1}xa$	M1	Start from commutative property for ax
$\Rightarrow xa^{-1} = a^{-1}x$	A1_2	Obtain commutative property for $a^{-1}x$
	11	
8 (i) $m^2 + 2km + 4 = 0$	M1	For stating and attempting to solve auxiliary eqn
$\Rightarrow m = -k \pm \sqrt{k^2 - 4}$	A1 2	For correct solutions, at any stage AEF
(a) $x = e^{-kt} \left(A e^{\sqrt{k^2 - 4}t} + B e^{-\sqrt{k^2 - 4}t} \right)$	M1	For using $e^{f(t)}$ with distinct real roots of
(a) x = c (Ac + Bc	A1 2	aux eqn
		For correct answer AEF
(b) $x = e^{-kt} \left(A e^{i\sqrt{4-k^2}t} + B e^{-i\sqrt{4-k^2}t} \right)$	M1	For using $e^{f(t)}$ with complex roots of aux eqn
		This form may not be seen explicitly but
		if stated as final answer earns M1 A0
$x = e^{-kt} \left(A' \cos \sqrt{4 - k^2} t + B' \sin \sqrt{4 - k^2} t \right)$	A1 2	For correct answer
OR $x = e^{-kt} \left(C' \frac{\cos(\sqrt{4-k^2} t + \alpha)}{\sin(\sqrt{4-k^2} t + \alpha)} \right)$		
(c) $x = e^{-2t} (A'' + B''t)$	M1	For using $e^{f(t)}$ with equal roots of aux eqn
	A1 2	For correct answer. Allow k for 2

(ii)(a) $x = B'e^{-t} \sin \sqrt{3} t$	B1 √	For using $t = 0$, $x = 0$ correctly, f.t. from
$\dot{x} = B' e^{-t} \left(\sqrt{3} \cos \sqrt{3} t - \sin \sqrt{3} t \right)$	M1 A1√	(b) For differentiating <i>x</i> For correct expression. f.t. from their <i>x</i>
$t = 0, \dot{x} = 6 \implies B' = 2\sqrt{3}, x = 2\sqrt{3}e^{-t}\sin\sqrt{3}t$	A1 4	For correct solution AEF
		SR $$ and AEF OK for $x = C'e^{-t}\cos\left(\sqrt{3}t + \frac{1}{2}\pi\right)$
(b) $x \rightarrow 0$	B1	For correct statement
$e^{-t} \rightarrow 0$ and sin() is bounded	B1 2	For both statements